A Systematic Review of the Nickel Content of the Normal Human Prostate Gland
PDF

Keywords

Nickel
Human Prostate
Normal Prostatic Tissue
Biomakers
Trace Elements

How to Cite

1.
Zaichick V. A Systematic Review of the Nickel Content of the Normal Human Prostate Gland. Health Sci. [Internet]. 2021 Jan. 11 [cited 2022 May 16];. Available from: https://mbmj.org/index.php/hs/article/view/334

Abstract

Introduction: The prostate gland is subject to various disorders. The etiology and pathogenesis of these diseases remain not well understood. Moreover, despite technological advancements, the differential diagnosis of prostate disorders has become progressively more complex and controversial. It was suggested that the nickel (Ni) level in prostatic tissue plays an important role in prostatic carcinogenesis and its measurement may be useful as a cancer biomarker. These suggestions promoted more detailed studies of the Ni content in the prostatic tissue of healthy subjects. Materials and methods: The present study is evaluated by systematic analysis of the published data for Ni content analyzed in prostatic tissue of “normal” glands. This evaluation reviewed 1889 studies, all of which were published in the years from 1921 to 2020 and were located by searching the databases Scopus, PubMed, MEDLINE, ELSEVIER-EMBASE, Cochrane Library, and the Web of Science. The articles were analyzed and “Median of Means” and “Range of Means” were used to examine the heterogeneity of the measured Ni content in prostates of apparently healthy men. Results: The objective analysis was performed on data from the 20 studies, which included 743 subjects. It was found that the range of means of prostatic Ni content reported in the literature for “normal” gland varies widely from 0.030 mg/kg to 4.50 mg/kg with a median of means 0.625 mg/kg on a wet mass basis. Conclusion: Because of the small sample size and high data heterogeneity, we recommend other primary studies be performed.

https://doi.org/10.15342/hs.2020.334
PDF

References

Nickel JC. Prostatitis. Can Urol Assoc J. 2011; 5:306-15. [Accessed 2022 Mar 28]. Available from: https://www.profnatali.it/uploadedfiles/o_1aup9mmn51kle108245d1dkq106qq.pdf

Lim KB. Epidemiology of clinical benign prostatic hyperplasia. Asian J Urol. 2017 Jul;4(3):148-151. https://doi.org/10.1016/j.ajur.2017.06.004

Rawla P. Epidemiology of Prostate Cancer. World J Oncol. 2019 Apr;10(2):63-89. https://doi.org/10.14740/wjon1191

Avisyn AP, Dunchik VN, Zhavoronkov AA, Zaichick VE, Sviridova TV. Histological structure of the prostate and content of zinc in it during various age period. Archiv Anatomy Gistology Ebriology (Leningrad). 1981;81(11):76–83.

Zaichick V. INAA and EDXRF applications in the age dynamics assessment of Zn content and distribution in the normal human prostate. J Radioanal Nucl Chem. 2004; 262:229–34. https://doi.org/10.1023/B:JRNC.0000040879.45030.4f

Zaichick V, Zaichick S. The effect of age on Br, Ca, Cl, K, Mg, Mn, and Na mass fraction in pediatric and young adult prostate glands investigated by neutron activation analysis. Appl Radiat Isot. 2013 Dec;82:145-51. https://doi.org/10.1016/j.apradiso.2013.07.035

Zaichick V, Zaichick S. INAA application in the assessment of Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, Se, and Zn mass fraction in pediatric and young adult prostate glands. J Radioanal Nucl Chem. 2013;298:1559–66. https://doi.org/10.1007/s10967-013-2554-3

Zaichick V, Zaichick S. NAA-SLR and ICP-AES application in the assessment of mass fraction of 19 chemical elements in pediatric and young adult prostate glands. Biol Trace Elem Res 2013;156:357–66. https://doi.org/10.1007/s12011-013-9826-1

Zaichick V, Zaichick S. Use of neutron activation analysis and inductively coupled plasma mass spectrometry for the determination of trace elements in pediatric and young adult prostate. Am J Analyt Chem 2013;4:696–706. https://www.scirp.org/html/40340.html

Zaichick V, Zaichick S. Relations of bromine, iron, rubidium, strontium, and zinc content to morphometric parameters in pediatric and nonhyperplastic young adult prostate glands. Biol Trace Elem Res. 2014 Mar;157(3):195-204. https://doi.org/10.1007/s12011-014-9890-1

Zaichick V, Zaichick S. Relations of the neutron activation analysis data to morphometric parameters in pediatric and nonhyperplasticyoung adult prostate glands. Adv Biomed Sci Engin. 2014;1:26-42.

Zaichick V, Zaichick S. Relations of the Al, B, Ba, Br, Ca, Cl, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Si, Sr, and Zn mass fractions to morphometric parameters in pediatric and nonhyperplastic young adult prostate glands. BioMetals. 2014;27(2):333-48. https://doi.org/10.1007/s10534-014-9716-9

Zaichick V, Zaichick S. Androgen-dependent chemical elements of prostate gland. Androl Gynecol: Curr Res. 2014;2:2. http://dx.doi.org/10.4172/2327-4360.1000121

Zaichick V. The distribution of 54 trace elements including zinc in pediatric and nonhyperplastic young adult prostate gland tissues. J Clin Laborat Investig Updates. 2014;2(1):1–15. http://dx.doi.org/10.14205/2310-9556.2014.02.01.1

Zaichick V, Zaichick S. Differences and relationships between morphometric parameters and zinc content in nonhyperplastic and hyperplastic prostate glands. Br J Med Med Res 2015;8:692–706. [Accessed 2022 Mar 28]. Available from: https://asianarchive.co.in/index.php/JAMMR/article/view/20203

Schwartz MK. Role of trace elements in cancer. Cancer Res. 1975; 35:3481–87. [Accessed 2022 Mar 28]. Available from: https://web.archive.org/web/20170907160945id_/http://cancerres.aacrjournals.org/content/canres/35/11_Part_2/3481.full.pdf

SorahamT, Waterhouse JA. Cancer of prostate among nickel-cadmium battery workers. Lancet. 1985 Feb 23;1(8426):459.https://doi.org/10.1016/s0140-6736(85)91177-8

Zaichick V, Zaichick S. Role of zinc in prostate cancerogenesis. In: Mengen und Spurenelemente. 19. Arbeitstagung. Friedrich-Schiller-Universitat, Jena. 1999:104–115.

Zaichick V., Zaichick S. Wynchank S. Intracellular zinc excess as one of the main factors in the etiology of prostate cancer. J Anal Oncol. 2016;5:124–31.

Zaichick V, Zaichick S, Rossmann M. Intracellular calcium excess as one of the main factors in the etiology of prostate cancer. AIMS Mol Sci 2016;3:635–47. https://doi.org/10.6000/1927-7229.2016.05.03.5

Dunchik V, Zherbin E, Zaichick V, Leonov A, Sviridova T. Method for differential diagnostics of prostate malignant and benign tumours. Russian patent (Author’s Certificate No 764660,priority of invention 27.10.1977). Discoveries, Inventions, Commercial Models, Trade Marks. 1980;35:13.

Zaichick V, Sviridova T, Zaichick S. Zinc in the human prostate gland: normal, hyperplastic and cancerous. Int Urol Nephrol. 1997;29(5):565-74. https://doi.org/10.1007/bf02552202

Zaichick V,Sviridova T, Zaichick S. Zinc in human prostate gland: normal, hyperplastic and cancerous. J Radioanal Nucl Chem 1997;217:157–61. https://doi.org/10.1007/bf02552202

Zaichick S, Zaichick V. Trace elements of normal, benign hypertrophic and cancerous tissues of the human prostate gland investigated by neutron activation analysis. J Appl Radiat Isot. 2012; 70(1):81–7. https://doi.org/10.1016/j.apradiso.2011.08.021

Zaichick V, Zaichick S. Ratios of selected chemical element contents in prostatic tissue as markers of malignancy. Hematol Med Oncol. 2016;1(2):1–8.

Zaichick V, Zaichick S. Trace element levels in prostate gland as carcinoma’s markers. J Cancer Ther. 2017;8:131–45. [Accessed 2022 Mar 28]. Available from: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=74050abstract

Zaichick V, Zaichick S. Trace element contents in prostate gland as carcinoma’s markers. Cancer Rep Rev. 2017;1(1):1–7. https://doi.org/10.4236/jct.2017.82011

Tipton JH, Steiner RL, Foland WD, Mueller J, Stanley M. USAEC-ORNL-Report-CF-54-12-66. 1954.

Kwiatek WM, Banas A, Gajda M, Gałka M, Pawlicki B, Falkenberg G, et al. Cancerous tissues analyzed by SRIXE. J Alloys Compd. 2005;401(1-2):173–7. https://doi.org/10.1016/j.jallcom.2005.02.070

Iyengar GV. Reevaluation of the trace element content in reference men. Radiat Phys Chem. 1998;51:545–60. https://doi.org/10.1016/S0969-806X(97)00202-8

Enterline PE, Marsh GM. Mortality among workers in a nickel refinery and alloy manufacturing plant in West Virginia. J Natl Cancer Inst 1982;68(6:925-33.

Sivulka DJ. Assessment of respiratory carcinogenicity associated with exposure to metallic nickel: A review. Regul Toxicol Pharmacol. 2005 Nov;43(2):117-33. https://doi.org/10.1016/j.yrtph.2005.06.014

Grimsrud TK, Peto J. Persisting risk of nickel related lung cancer and nasal cancer among Clydach refiners. Occup Environ Med. 2006 May;63(5):365-6. https://doi.org/10.1136/oem.2005.026336

Pietruska JR, Liu X, Smith A, McNeil K, Weston P, Zhitkovich A, et al. Bioavailability, intracellular mobilization of nickel, and HIF-1α activation in human lung epithelial cells exposed to metallic nickel and nickel oxide nanoparticles. Toxicol Sci. 2011;124(1):138–48. https://doi.org/10.1093/toxsci/kfr206

Magaye R, Zhao J. Recent progress in studies of metallic nickel and nickel-based nanoparticles’ genotoxicity and carcinogenicity. Environ Toxicol Pharmacol. 2012 Nov;34(3):644-50. https://doi.org/10.1016/j.etap.2012.08.012

Blanc-Lapierre A, RhaziM, Richard H, Parent M-E. O22-3 Occupational exposure to chromium, nickel and cadmium, and prostate cancer risk and in a population-based case-control study in Montreal, Canada. Occup Environ Med. 2016;73(Suppl 1):A42.2-A42. https://doi.org/10.1136/OEMED-2016-103951.114

Chang W-H, Lee C-C, Yen Y-H, Chen H-L. Oxidative damage in patients with benignprostatic hyperplasia and prostate cancer co-exposed to phthalates and to trace elements. Environ Int. 2018;121(Pt 2):1179-84. https://doi.org/10.1016/j.envint.2018.10.034

IARC. International Agency for Research on Cancer. Overall evaluation of carcinogenicity, nickel compounds. Monograph.1990: 40.

Zaichick V. Medical elementology as a new scientific discipline. J Radioanal Nucl Chem. 2006;269:303–9. https://doi.org/10.1007/s10967-006-0383-3

Hunter P. A toxic brew we cannot live without. Micronutrients give insights into the interplay between geochemistry and evolutionary biology. EMBO Rep. 2008; 9(1):15–18. https://doi.org/10.1038/sj.embor.7401148

López-Alonso M. Trace Minerals and Livestock: Not Too Much Not Too Little. ISRN Vet Sci. 2012 Dec 4;2012:704825.. https://doi.org/10.5402/2012/704825

Anke M, Groppel B, Kronemann H, Grün M. Nickel--an essential element. IARC Sci Publ 1984;(53):339-65.

Spears JW. Boron, chromium, manganese, and nickel in agricultural animal production. Biol Trace Elem Res. 2019 Mar;188(1):35-44. https://doi.org/10.1007/s12011-018-1529-1

Ionescu JG, Novotny J, Stejskal V, Lätsch A, Blaurock-Busch E, et al. Increased levels of transition metals inbreast cancer tissue. Neuro Endocrinol Lett. 2006 Dec;27 Suppl 1:36-9.

Koch HJ, Smith ER, Shimp NF, Connor J. Analysis of trace elements in tissue. I. Normal tissue. Cancer. 1956;9(3):499–511. https://doi.org/10.1002/1097-0142(195605/06)9:3%3C499::aid-cncr2820090311%3E3.0.co;2-1

Zakutinsky DI, Parfyenov YuD, Selivanova LN. Data book on the radioactive isotopes toxicology. State Publishing House of Medical Literature, Moscow. 1962.

Tipton IH, Cook MJ. Trace elements in human tissue. Part II. Adult subjects from the United States. Health Phys. 1963 Feb;9:103-45.https://doi.org/10.1097/00004032-196302000-00002

Forssen A. Inorganic elements in the human body. I. Occurrence of Ba, Br, Ca, Cd, Cs, Cu, K, Mn, Ni, Sn, Sr, Y and Zn in the human body. Ann Med Exp Biol Fenn.1972;50(3):99-162.

Guntupalli JN, Padala S, Gummuluri AV, Muktineni RK, Byreddy SR, Sreerama L, et al. Trace elemental analysis of normal, benign hypertrophic and cancerous tissues of the prostate gland using the particle-induced X-ray emission technique. Eur J Cancer Prev 2007;16(2):108-15. https://doi.org/10.1097/01.cej.0000228409.75976.b6

Zaichick S, Zaichick V, Nosenko S, Moskvina I. Mass fractions of 52 trace elements and zinc trace element content ratios in intact human prostates investigated by inductively coupled plasma mass spectrometry. Biol Trace Elem Res. 2012 Nov;149(2):171-83. https://doi.org/10.1007/s12011-012-9427-4

Zaichick V, Zaichick S. Use of INAA and ICP-MS for the assessment of trace element mass fractions in adult and geriatric prostate. J Radioanal Nucl Chem. 2014; 301:383–97. https://doi.org/10.1007/s10967-014-3173-3

Zaichick V. The variation with age of 67 macro-and microelement contents in nonhyperplastic prostate glands of adult and elderly males investigated by nuclear analytical and related methods. Biol Trace Elem Res. 2015 Nov;168(1):44-60. https://doi.org/10.1007/s12011-015-0342-3

Zaichick V, Zaichick S. Age-related changes in concentration and histological distribution of 54 trace elements in nonhyperplastic prostate of adults. Int Arch Urol Complic. 2016, 2(2):019. [Accessed 2022 Mar 28]. Available from: https://pdfs.semanticscholar.org/d5fb/3c4e5af0870de17717f56123a43625c622d5.pdf

Zaichick S, Zaichick V. Prostatic tissue levels of 43 trace elements in patients with BPH. Br J Med & Med Res. 2016;15(2):1–12.

Zaichick V, Zaichick S. Prostatic tissue levels of 43 trace elements in patients with prostate adenocarcinoma. Cancer Clin Oncol. 2016;5(1):79–94.

Zaichick V, Zaichick S. Chemical element contents in normal and benign hyperplastic prostate. Ann Mens Health Wellness. 2017;1(2):1006.

Zaichick V. Differences between 66 chemical element contents in normal and cancerous prostate. J Anal Oncol. 2017;6:37–56. https://doi.org/10.6000/1927-7229.2017.06.02.1

Zaichick V, Zaichick S. Comparison of 66 chemical element contents in normal and benign hyperplastic prostate. Asian J Urol. 2019 Jul;6(3):275-289. https://doi.org/10.1016/j.ajur.2017.11.009

Isaacs JT. Prostatic structure and function in relation to the etiology of prostatic cancer. Prostate. 1983;4(4):351-66. https://doi.org/10.1002/pros.2990040405

Leissner KM, Fielkegard B, Tisell LE. Concentration and content of zinc in human prostate. Invest Urol. 1980;18:32–5.

Woodard HQ, White DR. The composition of body tissues. Br J Radiol. 1986 Dec;59(708):1209-18. https://doi.org/10.1259/0007-1285-59-708-1209

Arnold WN, Thrasher JB. Selenium concentration in the prostate. Biol Trace Elem Res. 2003 Mar;91(3):277-80. https://doi.org/10.1385/bter:91:3:277

Schroeder HA, Nason AP, Tipton IH, Balassa JJ. Essential trace metals in man: Zinc. Relation to environmental cadmium. J Chron Dis. 1967 Apr;20(4):179-210. https://doi.org/10.1016/0021-9681(67)90002-1

Saltzman BE, Gross SB, Yeager DW, Meiners BG, Gartside PS. Total body burdens and tissue concentrations of lead, cadmium, copper, zinc, and ash in 55 human cadavers. Environ Res. 1990 Aug;52(2):126-45. https://doi.org/10.1016/s0013-9351(05)80248-8

Zaichick V. Sampling, sample storage and preparation of biomaterials for INAA in clinical medicine, occupational and environmental health. In: Harmonization of Health-Related Environmental Measurements Using Nuclear and Isotopic Techniques. IAEA, Vienna. 1997:123–133.

Zaichick V. Losses of chemical elements in biological samples under the dry ashing process. Trace Elements in Medicine (Moscow). 2004;5(3):17–22.

Vernadsky VI. Living Matter, Nauka, Moscow. 1978.

Zaichick V, Ermidou-Pollet S, Pollet S. Medical elementology: a new scientific discipline. Trace Elem Electroly. 2007;24(2):69–74.

Anke M, Trüpschuch A, Dorn W, Seifert M, Pilz K, Vormann J, et al. Intake of nickel in Germany: Risk or normality? J Trace Microprobe Tech. 2000;18(4):549-56.

Mania M, Rebeniak M, Postupolski J. Food as a source of exposure to nickel. Rocz Panstw Zakl Hig. 2019;70(4):393-399. https://doi.org/10.32394/rpzh.2019.0090

Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, et al. Update of the risk assessment of nickel in food and drinking water. EFSA J. 2020 Nov 5;18(11):e06268. https://doi.org/10.2903/j.efsa.2020.6268

Ahmad MSA, Ashraf M. Essential roles and hazardous effects of nickel in plants. Rev Environ Contam Toxicol. 2011;214:125-67. https://doi.org/10.1007/978-1-4614-0668-6_6

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 Zaichick V