Nutritional Considerations in COVID-19 Pandemic
PDF

Keywords

Coronavirus
COVID-19
Vitamin C
Vitamin D
Vitamin A
Hydroxychloroquine
Nutrition

Categories

How to Cite

1.
Zhang Y, Chen G. Nutritional Considerations in COVID-19 Pandemic. Integr J Med Sci [Internet]. 2020 Aug. 4 [cited 2024 Dec. 22];7. Available from: https://mbmj.org/index.php/ijms/article/view/198

Abstract

In December 2019, a novel severe acute respiratory syndrome coronavirus (SARS-Cov2) emerged in Wuhan, China, which is followed by the global pandemic of coronavirus disease (COVID-19).  So far, COVID-19 is affecting the health and lives of millions of people and impacting the economy dramatically in more than 180 countries worldwide. Since the outbreak of COVID-19, potential medical treatments and vaccines have been developed and tested by biotech and pharmaceutical companies. Nutrition is critical for the prevention and recovery of diseases. Multiple nutrients have been considered as potential means to help in the combat against COVID-19. In addition, nutritional considerations are also important for people to maintain health when their daily dietary behaviors and physical activities are altered by COVID-19. Here, we tried to summarize potential medical treatments, vaccines, and important nutrients affecting outcomes of COVID-19 patients. In addition, we discussed the influences of dietary supplements and lifestyles for healthy and sensitive populations during the pandemic.

https://doi.org/10.15342/ijms.7.198
PDF

References

World Health Organization. Coronavirus Disease (COVID-19) Dashboard. WHO. [Data last updated: 2020/7/27, 6:58pm CEST]. Available from: https://covid19.who.int/

World Health Organization. Coronavirus disease (COVID-19) Situation Report – 170. WHO. [Accessed 2021 Oct 02]. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200708-covid-19-sitrep-170.pdf?sfvrsn=bca86036_2

Chen ZL, Zhang Q, Lu Y, et al. Distribution of the COVID-19 epidemic and correlation with population emigration from Wuhan, China. Chin Med J (Engl). 2020 May 5; 133(9):1044-1050. https://doi.org/10.1097/cm9.0000000000000782

Tyrrel DAJ, Almedia JD, Berry DM, Cunningham CH, Hamre D, Hofstad MS, et al. Coronavirus. Nature. 1968; 220:650.

Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev. 2005 Dec; 69(4):635‐64. https://doi.org/10.1128/mmbr.69.4.635-664.2005

Bond CW, Leibowitz JL, Robb JA. Pathogenic murine coronaviruses. II. Characterization of virus-specific proteins of murine coronaviruses JHMV and A59V. Virology. 1979 Apr 30; 94(2):371-384. https://doi.org/10.1016/0042-6822(79)90468-9

Brian DA, Hogue B G, Kienzle TE. The coronavirus hemagglutinin esterase glycoprotein. The Coronaviridae. Boston MA: Springer; 1995. 165-179. https://doi.org/10.1007/978-1-4899-1531-3_8

Lee HJ, Shieh CK, Gorbalenya AE, Koonin EV, La Monica N, Tuler J, et al. The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology. 1991 Feb;180(2):567-82. https://doi.org/10.1016/0042-6822(91)90071-i

Lomniczi B. Biological properties of avian coronavirus RNA. J Gen Virol. 1977 Sep; 36(3):531-3. https://doi.org/10.1099/0022-1317-36-3-531

Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020 Mar 16; 24:91-98. https://doi.org/10.1016/j.jare.2020.03.005

Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China Cell Host Microbe. 2020 Mar 11;27(3):325-328. https://doi.org/10.1016/j.chom.2020.02.001

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020 Feb 22;395(10224):565-574. https://doi.org/10.1016/s0140-6736(20)30251-8

Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. 2020 Apr; 92(4):418-423. https://doi.org/10.1002/jmv.25681

McIntosh K. Coronaviruses: a comparative review. Curr Top Microbiol Immunol. 1974: 63;85-129. https://doi.org/10.1007/978-3-642-65775-7_3

Peiris JS, Guan Y, Yuen KY. Yuen Severe acute respiratory syndrome. Nat Med. 2004 Dec; 10(12 Suppl):S88-97. https://doi.org/10.1038/nm1143

Rahman A, Sarkar A. Risk factors for fatal middle east respiratory syndrome coronavirus infections in Saudi Arabia: analysis of the WHO Line List, 2013–2018. Am J Public Health. 2019 Sep; 109(9):1288-1293. https://doi.org/10.2105/ajph.2019.305186

Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020 Feb 15;395(10223):470-473. https://doi.org/10.1016/s0140-6736(20)30185-9

Chen J. Pathogenicity and transmissibility of 2019‐nCoV—a quick overview and comparison with other emerging viruses. Microbes Infect. 2020 Mar;22(2):69-71. https://doi.org/10.1016/j.micinf.2020.01.004

Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019‐nCoV) in China, from 2019 to 2020: a data‐driven analysis in the early phase of the outbreak. Int J Infect Dis. 2020 Feb 1; 9(2):388. https://doi.org/10.1016/j.ijid.2020.01.050

Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019‐nCoV outbreak originating in Wuhan, China: a modelling study. Lancet. 2020 Feb 29;395(10225):689-697. https://doi.org/10.1016/s0140-6736(20)30260-9

World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV). WHO. [Accessed 2021 Oct 02]. Available from: https://www.who.int/emergencies/mers-cov/en/

Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS‐CoV‐2 spike glycoprotein. Cell. 2020 Apr 16;181(2):281-292.e6. https://doi.org/10.1016/j.cell.2020.02.058

Woelfel R, Comran VM, Guggemos W, Seilmaier M, Zange S, Mueller MA, et al. Clinical presentation and virological assessment of hospitalized cases of coronavirus disease 2019 in a travel‐associated transmission cluster. MedRxiv. 2020.

Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, et al. Treatment of 5 Critically Ill Patients With COVID‐19 With Convalescent Plasma. JAMA. 2020 Apr 28; 323(16):1582-1589. https://doi.org/10.1001/jama.2020.4783

White NJ. The treatment of malaria. N Engl J Med. 1996 Sep 12; 335(11):800-6. https://doi.org/10.1056/nejm199609123351107

Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect Dis. 2003 Nov;3(11):722-7. https://doi.org/10.1016/s1473-3099(03)00806-5

Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020 Mar;30(3):269-271. https://doi.org/10.1038/s41422-020-0282-0

Huang M, Tang T, Pang P, Li M, Ma R, Lu J, et al. Treating COVID-19 with Chloroquine. J Mol Cell Biol. 2020 May 18;12(4):322‐325. https://doi.org/10.1093/jmcb/mjaa014

McChesney EW. Animal toxicity and pharmacokinetics of hydroxychloroquine sulfate. Am J Med. 1983 Jul 18; 75(1A):11-18. https://doi.org/10.1016/0002-9343(83)91265-2

Molina JM, Delaugerre C, Le Goff J, Mela-Lima B, Ponscarme D, Goldwirt L, et al. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect. 2020 Jun; 50(4):384. https://doi.org/10.1016/j.medmal.2020.03.006

Chen J, Liu D, Liu L, Liu P, Xu Q, Xia L, et al. [A pilot study of hydroxychloroquine in treatment of patients with moderate COVID-19]. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020 May 25; 49(2):215-219. https://doi.org/10.3785/j.issn.1008-9292.2020.03.03

Tang W, Cao Z, Han M, Wang Z, Chen J, Sun W, et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ. 2020 May 14; 369:m1849. https://doi.org/10.1136/bmj.m1849

Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First Case of 2019 Novel Coronavirus in the United States. N Engl J Med. 2020 Mar 5; 382(10):929-936. https://doi.org/10.1056/nejmoa2001191

Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, et al. Compassionate Use of Remdesivir for Patients with Severe Covid-19. N Engl J Med. 2020 Jun 11;382(24):2327-2336. https://doi.org/10.1056/nejmoa2007016

Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020 May 16; 395(10236):1569-1578. https://doi.org/10.1016/s0140-6736(20)31022-9

Graham BS. Rapid COVID-19 vaccine development. Science. 2020 May 29;368(6494):945-946. https://doi.org/10.1126/science.abb8923

Ahmed SF, Quadeer AA, McKay MR. Preliminary Identification of Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-2) Based on SARS-CoV Immunological Studies. Viruses. 2020 Feb 25; 12(3):254. https://doi.org/10.3390/v12030254

World Health Organization. DRAFT landscape of COVID-19 candidate vaccines. WHO. 2020. [Accessed 2021 Oct 05]. Available from: https://www.who.int/docs/default-source/a-future-for-children/novel-coronavirus_landscape_covid-19.pdf?sfvrsn=4d8bd201_1

Wang F, Kream RM, Stefano GB. An Evidence Based Perspective on mRNA-SARS-CoV-2 Vaccine Development. Med Sci Monit. 2020 May 5; 26:e924700. https://doi.org/10.12659/msm.924700

Robert-Guroff M. Replicating and non-replicating viral vectors for vaccine development. Curr Opin Biotechnol. 2007 Dec;18(6):546-556. https://doi.org/10.1016/j.copbio.2007.10.010

Smith TRF, Patel A, Ramos S, Elwood D, Zhu X, Yan J, et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun. 2020 May 20; 11(1):2601. https://doi.org/10.1038/s41467-020-16505-0

Effects of malnutrition on smallpox and yellow fever vaccination. Nutr Rev. 1967 Apr; 25(4):108-110. https://doi.org/10.1111/j.1753-4887.1967.tb05593.x

Bester JC. Measles and Measles Vaccination: A Review. JAMA Pediatr. 2016 Dec 1;170(12):1209-1215. https://doi.org/10.1001/jamapediatrics.2016.1787

Diness BR, Martins CL, Balé C, Garly ML, Ravn H, Rodrigues A, et al. The effect of high-dose vitamin A supplementation at birth on measles incidence during the first 12 months of life in boys and girls: an unplanned study within a randomised trial. Br J Nutr. 2011 Jun 28; 105(12):1819-1822. https://doi.org/10.1017/s0007114510005532

Benn CS, Balde A, George E, Kidd M, Whittle H, Lisse IM, et al. Effect of vitamin A supplementation on measles-specific antibody levels in Guinea-Bissau. Lancet. 2002 Apr 13; 359(9314):1313-1314. https://doi.org/10.1016/s0140-6736(02)08274-0

Barclay AJ, Foster A, Sommer A. Vitamin A supplements and mortality related to measles: a randomised clinical trial. Br Med J (Clin Res Ed). 1987 Jan; 294(6567):294-296. https://doi.org/10.1136/bmj.294.6567.294

Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol. 2020 May; 92(5):479-490. https://doi.org/10.1002/jmv.25707

Jee J, Hoet AE, Azevedo MP, Vlasova AN, Loerch SC, Pickworth CL, et al. Effects of dietary vitamin A content on antibody responses of feedlot calves inoculated intramuscularly with an inactivated bovine coronavirus vaccine. Am J Vet Res. 2013 Oct; 74(10):1353‐62. https://doi.org/10.2460/ajvr.74.10.1353

West CE, Sijtsma SR, Kouwenhoven B, Rombout JH, van der Zijpp AJ. Epithelia‐damaging virus infections affect vitamin A status in chickens. J Nutr. 1992 Feb; 122(2):333‐9. https://doi.org/10.1093/jn/122.2.333

Trasino SE. A role for retinoids in the treatment of COVID-19? Clin Exp Pharmacol Physiol. 2020 Oct; 47(10):1765-1767. https://doi.org/10.1111/1440-1681.13354

Keil SD, Bowen R, Marschner S. Inactivation of Middle East respiratory syndrome coronavirus (MERS‐CoV) in plasma products using a riboflavin‐based and ultraviolet light‐based photochemical treatment. Transfusion. 2016 Dec; 56(12):2948‐2952. https://doi.org/10.1111/trf.13860

Kyme P, Thoennissen NH, Tseng CW, Thoennissen GB, Wolf AJ, Shimada K, et al. C/EBPepsilon mediates nicotinamide‐enhanced clearance of Staphylococcus aureus in mice. J Clin Invest. 2012 Sep; 122(9):3316‐29. https://doi.org/10.1172/jci62070

Cheng RZ. Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 (COVID-19)? Med Drug Discov. 2 Mar 2020; 5:100028. https://doi.org/10.1016/j.medidd.2020.100028

Fowler AA 3rd, Truwit JD, Hite RD, Morris PE, DeWilde C, Priday A, et al. Effect of Vitamin C Infusion on Organ Failure and Biomarkers of Inflammation and Vascular Injury in Patients With Sepsis and Severe Acute Respiratory Failure: The CITRIS-ALI Randomized Clinical Trial. JAMA. 2019 Oct 1; 322(13):1261-1270. https://doi.org/10.1001/jama.2019.11825

Patel V, Dial K, Wu J, Gauthier AG, Wu W, Lin M, et al. Dietary antioxidants significantly attenuate hyperoxia-induced acute inflammatory lung injury by enhancing macrophage function via reducing the accumulation of airway HMGB1. Int J Mol Sci. 2020 Feb 1; 21:977. https://doi.org/10.3390/ijms21030977

Krinsky NI, Beecher G, Burk R, Chan A, Erdman J, Jacob R, et al. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. The National Academies Press; Washington, DC, USA: 2000.

Ralli EP, Friedman GJ, Rubin SH. The mechanism of the excretion of vitamin c by the human kidney. J Clin Invest. 1938 Nov; 17(6):765-770. https://doi.org/10.1172/jci101006

Ali N. Role of vitamin D in preventing of COVID-19 infection, progression and severity. J Infect Public Health. 2020 Oct; 13(10):1373-1380. https://doi.org/10.1016/j.jiph.2020.06.021

Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano JL. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020 Apr 2; 12(4):988. https://doi.org/10.3390/nu12040988

Tian Y, Rong L. Letter: Covid-19 and vitamin D-authors’ reply. Aliment Pharmacol Ther. 2020 May; 51(10):995-996. https://doi.org/10.1111/apt.15764

Tsujino I, Ushikoshi-Nakayama R, Yamazaki T, Matsumoto N, Saito I. Pulmonary activation of vitamin D3 and preventive effect against interstitial pneumonia. J Clin Biochem Nutr. 2019 Nov; 65(3):245–251. https://doi.org/10.3164/jcbn.19-48

Zdrenghea MT, Makrinioti H, Bagacean C, Bush A, Johnston SL, Stanciu LA. Vitamin D modulation of innate immune responses to respiratory viral infections. Rev Med Virol. 2017 Jan; 27(1). https://doi.org/10.1002/rmv.1909

Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano JL. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020 Apr 2; 12(4):988. https://doi.org/10.3390/nu12040988

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 Feb 15; 395(10223):497-506. https://doi.org/10.1016/s0140-6736(20)30183-5

Poudel-Tandukar K, Poudel KC, Jimba M, Kobayashi J, Johnson CA, Palmer PH. Serum 25-hydroxyvitamin d levels and C-reactive protein in persons with human immunodeficiency virus infection. AIDS Res Hum Retroviruses. 2013 Mar; 29(3):528–534. https://doi.org/10.1089/aid.2012.0120

Dancer RC, Parekh D, Lax S, D’Souza V, Zheng S, Bassford CR, et al. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax. 2015 Jul;70(7):617–624. https://doi.org/10.1136/thoraxjnl-2014-206680

Autier P, Mullie P, Macacu A, Dragomir M, Boniol M, Coppens K, et al. Effect of vitamin D supplementation on non-skeletal disorders: a systematic review of meta-analyses and randomised trials. Lancet Diabet Endocrinol. 2017 Dec;5(12):986–1004. https://doi.org/10.1016/s2213-8587(17)30357-1

Bergman P, Lindh ÅU, Björkhem-Bergman L, Lindh JD. Vitamin D and respiratory tract infections: a systematic review and meta-analysis of randomized controlled trials. PLoS ONE. 2013 Jun; 19; 8(6):e65835. https://doi.org/10.1371/journal.pone.0065835

Hamer M, Kivimäki M, Gale CR, Batty GD. Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: A community-based cohort study of 387,109 adults in UK. Brain Behav Immun. 2020 Jul;87:184-187. https://doi.org/10.1016/j.bbi.2020.05.059

Ruiz-Roso MB, de Carvalho Padilha P, Mantilla-Escalante DC, et al. Covid-19 Confinement and Changes of Adolescent's Dietary Trends in Italy, Spain, Chile, Colombia and Brazil. Nutrients. 2020 Jun 17;12(6):E1807. https://doi.org/10.3390/nu12061807

Zhao A, Li Z, Ke Y, Huo S, Ma Y, Zhang Y, et al. Dietary Diversity among Chinese Residents during the COVID-19 Outbreak and Its Associated Factors. Nutrients. 2020 Jun 6;12(6):E1699. https://doi.org/10.3390/nu12061699

Ammar A, Brach M, Trabelsi K, Chtourou H, Boukhris O, Masmoudi L,et al. Effects of COVID-19 Home Confinement on Eating Behaviour and Physical Activity: Results of the ECLB-COVID19 International Online Survey. Nutrients. 2020 May 28;12(6):1583. https://doi.org/10.3390/nu12061583

Gomes M, Figueiredo D, Teixeira L, Poveda V, Paúl C, Santos-Silva A, et al. Physical inactivity among older adults across Europe based on the SHARE database. Age Ageing. 2017 Jan 20; 46(1):71-77. https://doi.org/10.1093/ageing/afw165

Goethals L, Barth N, Guyot J, Hupin D, Celarier T, Bongue B. Impact of Home Quarantine on Physical Activity Among Older Adults Living at Home During the COVID-19 Pandemic: Qualitative Interview Study. JMIR Aging. 2020 May 7; 3(1):e19007. https://doi.org/10.2196/19007

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 Guoxun Chen & Yan Zhang

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...