Nutritional Considerations in COVID-19 Pandemic


Vitamin C
Vitamin D
Vitamin A

How to Cite

Zhang Y, Chen G. Nutritional Considerations in COVID-19 Pandemic. Integr J Med Sci [Internet]. 2020Aug.4 [cited 2020Oct.27];7. Available from:


In December 2019, a novel severe acute respiratory syndrome coronavirus (SARS-Cov2) emerged in Wuhan, China, which is followed by the global pandemic of coronavirus disease (COVID-19).  So far, COVID-19 is affecting the health and lives of millions of people and impacting economic dramatically in more than 180 countries worldwide. Since the outbreak of COVID-19, potential medical treatments and vaccines have been developed and tested by biotech and pharmaceutical companies. Nutrition is critical for prevent and recovery of diseases. Multiple nutrients have been considered as potential means to help in the combat against COVID-19. In addition, nutritional considerations are also important for people to maintain healthy when their daily dietary behaviors and physical activities are altered by COVID-19. Here, we tried to summarize potential medical treatments, vaccines, and important nutrients affecting outcomes of COVID-19 patients. In addition, we discussed the influences of dietary supplement and lifestyle for healthy and sensitive populations during the pandemic.


World Health Organization. Coronavirus Disease (COVID-19) Dashboard. WHO. (Data last updated: 2020/7/27, 6:58pm CEST)

World Health Organization. Coronavirus disease (COVID-19) Situation Report – 170. WHO. (Data as received by WHO from national authorities by 10:00 CEST, 8 July 2020)

Chen ZL, Zhang Q, Lu Y, et al. Distribution of the COVID-19 epidemic and correlation with population emigration from Wuhan, China. Chin Med J (Engl). 2020;133(9):1044-1050. doi:10.1097/CM9.0000000000000782

Tyrrel, D. A. J., J. D. Almedia, D. M. Berry, C. H. Cunningham, D. Hamre, M. S. Hofstad, L. Malluci, and K. McIntosh. 1968. Coronavirus. Nature 220:650.

Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev. 2005;69(4):635‐664. doi:10.1128/MMBR.69.4.635-664.2005

Bond, C. W., J. L. Leibowitz, and J. A. Robb. 1979. Pathogenic murine coronaviruses. II. Characterization of virus-specific proteins of murine coronaviruses JHMV and A59V. Virology 94:371-384.

Brian, D. A., B. G. Hogue, and T. E. Kienzle. 1995. The coronavirus hemagglutinin esterase glycoprotein, p. 165-179. In S. G. Siddell (ed.), The Coronaviridae. Plenum Press, New York, N.Y.

Lee, H. J., C. K. Shieh, A. E. Gorbalenya, E. V. Koonin, N. La Monica, J. Tuler, A. Bagdzhadzhyan, and M. M. Lai. 1991. The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology 180:567-582.

Biological properties of avian coronavirus RNA. Lomniczi B J Gen Virol. 1977 Sep; 36(3):531-3.

Muhammad Afnan Shereen, et al, Journal of Advanced Research. Volume 24, July 2020, Pages 91-98

A. Wu, Y. Peng, B. Huang, X. Ding, X. Wang, P. Niu, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China Cell Host Microbe (2020)

R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding Lancet, 395 (10224) (2020), pp. 565-574

Y. Chen, Q. Liu, D. Guo Emerging coronaviruses: genome structure, replication, and pathogenesis J Med Virol (2020)

McIntosh, K. 1974. Coronaviruses: a comparative review. Curr. Top. Microbiol. Immunol. 63:85-129.

J. Peiris, Y. Guan, K. Yuen Severe acute respiratory syndrome Nat Med, 10 (12) (2004), pp. S88-S97

A. Rahman, A. Sarkar Risk factors for fatal middle east respiratory syndrome coronavirus infections in Saudi Arabia: analysis of the WHO Line List, 2013–2018 Am J Public Health, 109 (9) (2019), pp. 1288-1293

C. Wang, P.W. Horby, F.G. Hayden, G.F. Gao A novel coronavirus outbreak of global health concern The Lancet (2020)

Chen J. Pathogenicity and transmissibility of 2019‐nCoV—a quick overview and comparison with other emerging viruses. Microbes Infect. 2020;22(2), 10.1016/j.micinf.2020.01.004

Zhao S, Lin Q, Ran J, et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019‐nCoV) in China, from 2019 to 2020: a data‐driven analysis in the early phase of the outbreak. Int J Infect Dis. 2020;92:214‐217.

Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019‐nCoV outbreak originating in Wuhan, China: a modelling study. Lancet. 2020;395:689‐697.

World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV). WHO. (Data as received by WHO from national authorities by November 2029)

Walls AC, Park YJ, Tortorici MA, et al .: Structure, function, and antigenicity of the SARS‐CoV‐2 spike glycoprotein. Cell 2020. pii: S0092‐8674(20)30262‐2

Woelfel R, Comran VM, Guggemos W, et al .: Clinical presentation and virological assessment of hospitalized cases of coronavirus disease 2019 in a travel‐associated transmission cluster. medRxiv 2020. 03.05.20030502 (not peer‐reviewed yet)

Shen C, Wang Z, Zhao F, et al.: Treatment of 5 Critically Ill Patients With COVID‐19 With Convalescent Plasma. JAMA 2020. doi:10.1001/jama.2020.4783

White NJ. The treatment of malaria. N Engl J Med. 1996;335(11):800-806. doi:10.1056 /N EJM 1996091 23351107

Savarino A., Boelaert J.R., Cassone A., Majori G., Cauda R. Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect Dis. 2003;3:722–727.

Wang M., Cao R., Zhang L., Yang X., Liu J., Xu M. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020 doi: 10.1038/s41422–020–0282–0.

Huang M, Tang T, Pang P, et al. Treating COVID-19 with Chloroquine. J Mol Cell Biol. 2020;12(4):322‐325. doi:10.1093/jmcb/mjaa014

McChesney EW. Animal toxicity and pharmacokinetics of hydroxychloroquine sulfate. Am J Med. 1983;75(1A):11-18. doi:10.1016/0002-9343(83)91265-2

Molina JM, Delaugerre C, Le Goff J, et al. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect. 2020;50(4):384. doi:10.1016/j.medmal.2020.03.006

A pilot study of hydroxychloroquine in treatment of patients with moderate COVID-19. J Zhejiang Univ (Med Sci) 2020, Vol. 49 Issue (2): 215-219. doi: 10.3785/j.issn.1008-9292.2020.03.03

Tang W, Cao Z, Han M, et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ. 2020;369:m1849. Published 2020 May 14. doi:10.1136/bmj.m1849

Michelle L Holshue, Chas DeBolt, Scott Lindquist. First Case of 2019 Novel Coronavirus in the United States. 2020 The New England Journal of Medicine Volume: 382, Issue: 10, pp 929-936. doi: 10.1056/NEJMOA2001191

Grein J, Ohmagari N, Shin D, et al. Compassionate Use of Remdesivir for Patients with Severe Covid-19. N Engl J Med. 2020;382(24):2327-2336. doi:10.1056/NEJMoa2007016

Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial [published correction appears in Lancet. 2020 May 30;395(10238):1694]. Lancet. 2020;395(10236):1569-1578. doi:10.1016/S0140-6736(20)31022-9

Graham BS. Rapid COVID-19 vaccine development. Science. 2020;368(6494):945-946. doi:10.1126/science.abb8923

Ahmed SF, Quadeer AA, McKay MR. Preliminary Identification of Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-2) Based on SARS-CoV Immunological Studies. Viruses. 2020;12(3):254. Published 2020 Feb 25. doi:10.3390/v12030254

World Health Organization. DRAFT landscape of COVID-19 candidate vaccines. WHO. (Data last updated: 24 June 2020)

Wang F, Kream RM, Stefano GB. An Evidence Based Perspective on mRNA-SARS-CoV-2 Vaccine Development. Med Sci Monit. 2020;26:e924700. Published 2020 May 5. doi:10.12659/MSM.924700

Robert-Guroff M. Replicating and non-replicating viral vectors for vaccine development. Curr Opin Biotechnol. 2007;18(6):546-556. doi:10.1016/j.copbio.2007.10.010

Smith TRF, Patel A, Ramos S, et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun. 2020;11(1):2601. Published 2020 May 20. doi:10.1038/s41467-020-16505-0

Effects of malnutrition on smallpox and yellow fever vaccination. Nutr Rev. 1967;25(4):108-110. doi:10.1111/j.1753-4887.1967.tb05593.x

Bester JC. Measles and Measles Vaccination: A Review. JAMA Pediatr. 2016;170(12):1209-1215. doi:10.1001/jamapediatrics.2016.1787

Diness BR, Martins CL, Balé C, et al. The effect of high-dose vitamin A supplementation at birth on measles incidence during the first 12 months of life in boys and girls: an unplanned study within a randomised trial. Br J Nutr. 2011;105(12):1819-1822. doi:10.1017/S0007114510005532

Benn CS, Balde A, George E, et al. Effect of vitamin A supplementation on measles-specific antibody levels in Guinea-Bissau. Lancet. 2002;359(9314):1313-1314. doi:10.1016/S0140-6736(02)08274-0

Barclay AJ, Foster A, Sommer A. Vitamin A supplements and mortality related to measles: a randomised clinical trial. Br Med J (Clin Res Ed). 1987;294(6567):294-296. doi:10.1136/bmj.294.6567.294

Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol. 2020;92(5):479-490. doi:10.1002/jmv.25707

Jee J, Hoet AE, Azevedo MP, et al. Effects of dietary vitamin A content on antibody responses of feedlot calves inoculated intramuscularly with an inactivated bovine coronavirus vaccine. Am J Vet Res. 2013;74:1353‐1362. doi: 10.2460/ajvr.74.10.1353

West CE, Sijtsma SR, Kouwenhoven B, Rombout JH, van der Zijpp AJ. Epithelia‐damaging virus infections affect vitamin A status in chickens. J Nutr. 1992;122:333‐339. doi:10.1093/jn/122.2.333

Trasino SE. A role for retinoids in the treatment of COVID-19? [published online ahead of print, 2020 May 27]. Clin Exp Pharmacol Physiol. 2020;10.1111/1440-1681.13354. doi:10.1111/1440-1681.13354

Keil SD, Bowen R, Marschner S. Inactivation of Middle East respiratory syndrome coronavirus (MERS‐CoV) in plasma products using a riboflavin‐based and ultraviolet light‐based photochemical treatment. Transfusion. 2016;56:2948‐2952. doi:10.1111/trf.13860

Kyme P, Thoennissen NH, Tseng CW, et al. C/EBPepsilon mediates nicotinamide‐enhanced clearance of Staphylococcus aureus in mice. J Clin Invest. 2012;122:3316‐3329. doi:10.1172/JCI62070

Cheng RZ. Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 (COVID-19)?. Med Drug Discov. 2020;5:100028. doi:10.1016/j.medidd.2020.100028

Fowler AA 3rd, Truwit JD, Hite RD, et al. Effect of Vitamin C Infusion on Organ Failure and Biomarkers of Inflammation and Vascular Injury in Patients With Sepsis and Severe Acute Respiratory Failure: The CITRIS-ALI Randomized Clinical Trial [published correction appears in JAMA. 2020 Jan 28;323(4):379]. JAMA. 2019;322(13):1261-1270. doi:10.1001/jama.2019.11825

Patel V., Dial K., Wu J., Gauthier A.G., Wu W., Lin M. Dietary antioxidants significantly attenuate hyperoxia-induced acute inflammatory lung injury by enhancing macrophage function via reducing the accumulation of airway HMGB1. Int J Mol Sci. 2020;21:977.

Krinsky N.I., Beecher G., Burk R., Chan A., Erdman j.J., Jacob R., Jialal I., Kolonel L., Marshall J., Taylor Mayne P.R. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. The National Academies Press; Washington, DC, USA: 2000. A Report of the Panel on Dietary Antioxidants and Related Compounds, Subcommittees on Upper Reference Levels of Nutrients and Interpretation and Uses of Dietary Reference Intakes, and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Institute of Medicine.

Ralli EP, Friedman GJ, Rubin SH. The mechanism of the excretion of vitamin c by the human kidney. J Clin Invest. 1938;17(6):765-770. doi:10.1172/JCI101006

Ali N. Role of vitamin D in preventing of COVID-19 infection, progression and severity [published online ahead of print, 2020 Jun 20]. J Infect Public Health. 2020;S1876-0341(20)30531-1. doi:10.1016/j.jiph.2020.06.021

Grant W.B., Lahore H., McDonnell S.L., Baggerly C.A., French C.B., Aliano J.L. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020;12:988.

Tian Y., Rong L. Covid-19 and vitamin D-authors’ reply. Aliment Pharmacol Ther. 2020

Tsujino I., Ushikoshi-Nakayama R., Yamazaki T., Matsumoto N., Saito I. Pulmonary activation of vitamin D3 and preventive effect against interstitial pneumonia. J Clin Biochem Nutr. 2019;65:245–251.

Zdrenghea M.T., Makrinioti H., Bagacean C., Bush A., Johnston S.L., Stanciu L.A. Vitamin D modulation of innate immune responses to respiratory viral infections. Rev Med Virol. 2017;27:e1909.

Grant W.B., Lahore H., McDonnell S.L., Baggerly C.A., French C.B., Aliano J.L. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020;12:988.

Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506.

Poudel-Tandukar K., Poudel K.C., Jimba M., Kobayashi J., Johnson C.A., Palmer P.H. Serum 25-hydroxyvitamin d levels and C-reactive protein in persons with human immunodeficiency virus infection. AIDS Res Hum Retroviruses. 2013;29:528–534.

Dancer R.C., Parekh D., Lax S., D’Souza V., Zheng S., Bassford C.R. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS) Thorax. 2015;70:617–624.

Autier P., Mullie P., Macacu A., Dragomir M., Boniol M., Coppens K. Effect of vitamin D supplementation on non-skeletal disorders: a systematic review of meta-analyses and randomised trials. Lancet Diabet Endocrinol. 2017;5:986–1004.

Bergman P., Lindh ÅU, Björkhem-Bergman L., Lindh J.D. Vitamin D and respiratory tract infections: a systematic review and meta-analysis of randomized controlled trials. PLoS ONE. 2013;8:e65835.

Hamer M, Kivimäki M, Gale CR, Batty GD. Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: A community-based cohort study of 387,109 adults in UK. Brain Behav Immun. 2020;87:184-187. doi:10.1016/j.bbi.2020.05.059

Ruiz-Roso MB, de Carvalho Padilha P, Mantilla-Escalante DC, et al. Covid-19 Confinement and Changes of Adolescent's Dietary Trends in Italy, Spain, Chile, Colombia and Brazil. Nutrients. 2020;12(6):E1807. Published 2020 Jun 17. doi:10.3390/nu12061807

Zhao A, Li Z, Ke Y, et al. Dietary Diversity among Chinese Residents during the COVID-19 Outbreak and Its Associated Factors. Nutrients. 2020;12(6):E1699. Published 2020 Jun 6. doi:10.3390/nu12061699

Ammar A, Brach M, Trabelsi K, et al. Effects of COVID-19 Home Confinement on Eating Behaviour and Physical Activity: Results of the ECLB-COVID19 International Online Survey. Nutrients. 2020;12(6):E1583. Published 2020 May 28. doi:10.3390/nu12061583

Gomes M, Figueiredo D, Teixeira L, Poveda V, Paúl C, Santos-Silva A, Costa E. Physical inactivity among older adults across Europe based on the SHARE database. Age Ageing. 2017 Jan 20; 46(1):71-77.

Goethals L, Barth N, Guyot J, Hupin D, Celarier T, Bongue B. Impact of Home Quarantine on Physical Activity Among Older Adults Living at Home During the COVID-19 Pandemic: Qualitative Interview Study. JMIR Aging. 2020;3(1):e19007. Published 2020 May 7. doi:10.2196/19007

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 Guoxun Chen & Yan Zhang